弹塑性切线模量#
塑性乘子#
根据塑性流动法则和硬化法则,有
\[\begin{split}
\begin{equation}
\begin{aligned}
\dot{\boldsymbol{\varepsilon}}^{p} &= \dot{\gamma}\mathbf{N}(\boldsymbol{\sigma},\mathbf{A}),\\
\dot{\boldsymbol{\alpha}} &= \dot{\gamma}\mathbf{H}(\boldsymbol{\sigma},\mathbf{A}),
\end{aligned}
\end{equation}
\end{split}\]
其中,\(\mathbf{H}\) 是一般化的硬化模量,决定了硬化参数 \(\boldsymbol{\alpha}\) 的演化
若材料属于塑性屈服状态,则
(88)#\[
\dot{\Phi} = \frac{\partial \Phi}{\partial \boldsymbol{\sigma}}:\dot{\boldsymbol{\sigma}} + \frac{\partial \Phi}{\partial \mathbf{A}}\dot{\mathbf{A}},
\]
代入
(89)#\[
\dot{\boldsymbol{\sigma}} = \mathbf{D}^{e}:(\dot{\boldsymbol{\varepsilon}}-\dot{\boldsymbol{\varepsilon}}^p) = \mathbf{D}^{e}:(\dot{\boldsymbol{\varepsilon}}-\dot{\gamma}\mathbf{N})
\]
和
\[
\dot{\mathbf{A}} = \frac{\mathrm{d} \frac{\partial \psi^p}{\partial \boldsymbol{\alpha}}}{\mathrm{d} t} = \frac{\partial^2 \psi^p}{\partial \boldsymbol{\alpha}^2}\dot{\boldsymbol{\alpha}} = \frac{\partial^2 \psi^p}{\partial \boldsymbol{\alpha}^2}\dot{\gamma}\mathbf{H}
\]
到式 (88) 得到
\[
\dot{\Phi} = \frac{\partial \Phi}{\partial \boldsymbol{\sigma}}:\mathbf{D}^{e}:(\dot{\boldsymbol{\varepsilon}}-\dot{\gamma}\mathbf{N}) + \dot{\gamma}\frac{\partial \Phi}{\partial \mathbf{A}}\frac{\partial^2 \psi^p}{\partial \boldsymbol{\alpha}^2}\mathbf{H}
\]
于是得到
(90)#\[
\dot{\gamma} = \frac{\frac{\partial \Phi}{\partial \boldsymbol{\sigma}}:\mathbf{D}^{e}:\dot{\boldsymbol{\varepsilon}}}{\frac{\partial \Phi}{\partial \boldsymbol{\sigma}}:\mathbf{D}^{e}:\mathbf{N}-\frac{\partial \Phi}{\partial \mathbf{A}}\frac{\partial^2 \psi^p}{\partial \boldsymbol{\alpha}^2}\mathbf{H}},
\]
弹塑性切线模量#
\[
\dot{\boldsymbol{\sigma}} = \mathbf{D}^{ep}:\dot{\boldsymbol{\varepsilon}},
\]
其中
\[
\mathbf{D}^{ep} = \mathbf{D}^{e} - \frac{(\mathbf{D}^{e}:\mathbf{N})\otimes(\mathbf{D}^{e}:\frac{\partial \Phi}{\partial \boldsymbol{\sigma}})}{\frac{\partial \Phi}{\partial \boldsymbol{\sigma}}:\mathbf{D}^{e}:\mathbf{N}-\frac{\partial \Phi}{\partial \mathbf{A}}\frac{\partial^2 \psi^p}{\partial \boldsymbol{\alpha}^2}\mathbf{H}},
\]
是弹塑性切线模量,通常也被称为连续弹塑性切线模量,它是单轴拉伸应力-应变曲线中的常量模量 \(E_{ep}\) 的高维一般化
对称性#
对于关联塑性流动,有
\[
\mathbf{N} = \frac{\partial \Phi}{\partial \boldsymbol{\sigma}},
\]
此时, \(\mathbf{D}^{ep}\) 是对称的;而对于非关联塑性流动,\(\mathbf{D}^{ep}\) 一般是非对称的