Truesdell 应力率

Truesdell 应力率#

Truesdell 应力率基于客观应力 PK2 定义

\[ \overset{\circ}{\boldsymbol{\sigma}} = J^{-1}F\dot{\mathbf{S}}F^{T} = \dot{\boldsymbol{\sigma}} - \mathbf{L}\boldsymbol{\sigma} - \boldsymbol{\sigma}\mathbf{L}^{T} + \text{tr}(\mathbf{L})\boldsymbol{\sigma}. \]

Truesdell 应力率严格满足客观性,适用于需要高精度和严格框架不变性的有限变形分析。然而,其表达复杂、计算量大,数值实现较为繁琐,在各向同性塑性等某些情形下可能引入不必要的复杂性,甚至导致不理想的分析结果。因此,Truesdell 应力率更适合对客观性和理论严谨性要求较高的场合,而在一般工程应用中可根据实际需求选用更为简便的应力率形式

推导#

根据 PK2 应力,有

\[ J\boldsymbol{\sigma} = F\mathbf{S}F^{T}, \]

上式两端对时间 \(t\) 求导,左端得

(27)#\[ \frac{\mathrm{d}}{\mathrm{d}t}(J\boldsymbol{\sigma}) = \dot{J}\boldsymbol{\sigma} + J\dot{\boldsymbol{\sigma}}, \]

右端得

\[ \frac{\mathrm{d}}{\mathrm{d}t}(F\mathbf{S}F^{T}) = \dot{F}\mathbf{S}F^{T} + F\dot{\mathbf{S}}F^{T} + F\mathbf{S}\dot{F}^{T}, \]

由于

\[ \mathbf{L} = \dot{F}F^{-1}\quad\Longrightarrow\quad \dot{F} = \mathbf{L}F, \]

于是

(28)#\[\begin{split} \begin{equation} \begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}(F\mathbf{S}F^{T})&=\mathbf{L}F\mathbf{S}F^{T}+F\dot{\mathbf{S}}F^{T}+F\mathbf{S}F^{T}\mathbf{L}^{T}\\ &=J\mathbf{L}\boldsymbol{\sigma}+F\dot{\mathbf{S}}F^{T}+J\boldsymbol{\sigma}\mathbf{L}^{T}, \end{aligned} \end{equation} \end{split}\]

综合式 (27)(28),得

\[ \dot{J}\boldsymbol{\sigma} + J\dot{\boldsymbol{\sigma}} = J\mathbf{L}\boldsymbol{\sigma}+F\dot{\mathbf{S}}F^{T}+J\boldsymbol{\sigma}\mathbf{L}^{T}, \]

代入局部体积变化速率

\[ \dot{J} = J\text{tr}(\mathbf{L}), \]

两边除以 \(J\),整理得到

\[ J^{-1}F\dot{\mathbf{S}}F^{T} = \dot{\boldsymbol{\sigma}} - \mathbf{L}\boldsymbol{\sigma} - \boldsymbol{\sigma}\mathbf{L}^{T} + \text{tr}(\mathbf{L})\boldsymbol{\sigma}. \]

客观性#

由于在刚体旋转阶段

\[ \mathbf{L} = \mathbf{W}, \]

此时也有 \(\text{tr}(\mathbf{L}) = \text{tr}(\mathbf{W}) = 0\),因此,Truesdell 应力率的客观性也同 Jaumann 应力率得到满足

协变性#

即,若存在坐标旋转变换

\[ \mathbf{x}'(t) = Q_{r}(t)\mathbf{x}(t), \]

\[ \overset{\circ}{\boldsymbol{\sigma}'} := \dot{\boldsymbol{\sigma}}' - \mathbf{L}'\boldsymbol{\sigma}' - \boldsymbol{\sigma}'\mathbf{L}'^{T} + \text{tr}(\mathbf{L}')\boldsymbol{\sigma}' = Q_{r}\overset{\circ}{\boldsymbol{\sigma}}Q_{r}^{T}. \]

由于

\[\begin{split} \begin{equation} \begin{aligned} \mathbf{L}' = \dot{F}'F'^{-1} &= (\dot{Q}_{r}F+Q_{r}\dot{F})F^{-1}Q_{r}^{T}\\ &=\dot{Q}_{r}Q_{r}^{T}+Q_{r}\dot{F}F^{-1}Q_{r}^{T}\\ &=\dot{Q}_{r}Q_{r}^{T} + Q_{r}\mathbf{L}Q_{r}^{T}, \end{aligned} \end{equation} \end{split}\]

\[ \boldsymbol{\sigma}' = Q_{r}\boldsymbol{\sigma}Q_{r}^T, \]

于是

\[\begin{split} \begin{equation} \begin{aligned} \dot{\boldsymbol{\sigma}}' &= \dot{Q}_{r}\boldsymbol{\sigma}Q_{r}^T+Q_{r}\dot{\boldsymbol{\sigma}}Q_{r}^T+Q_{r}\boldsymbol{\sigma}\dot{Q}_{r}^T,\\ -\mathbf{L}'\boldsymbol{\sigma}' &= -\dot{Q}_{r}\boldsymbol{\sigma}Q_{r}^T - Q_{r}\mathbf{L}\boldsymbol{\sigma}Q_{r}^T,\\ - \boldsymbol{\sigma}'\mathbf{L}'^{T}&=-Q_{r}\boldsymbol{\sigma}\dot{Q}_{r}^T - Q_{r}\boldsymbol{\sigma}\mathbf{L}Q_{r}^{T},\\ \text{tr}(\mathbf{L}')\boldsymbol{\sigma}'&=(\text{tr}(\dot{Q}_{r}Q_{r}^{T})+\text{tr}(Q_{r}\mathbf{L}Q_{r}^{T}))\boldsymbol{\sigma}', \end{aligned} \end{equation} \end{split}\]

由于 \(\dot{Q}_{r}Q_{r}^{T}\) 是反对称矩阵,且正交变换保迹,因此

\[ \text{tr}(\dot{Q}_{r}Q_{r}^{T})+\text{tr}(Q_{r}\mathbf{L}Q_{r}^{T}) = \text{tr}(\mathbf{L}), \]

代入并将上述四式相加,得到

\[\begin{split} \begin{equation} \begin{aligned} \overset{\circ}{\boldsymbol{\sigma}'} &:= \dot{\boldsymbol{\sigma}}' - \mathbf{L}'\boldsymbol{\sigma}' - \boldsymbol{\sigma}'\mathbf{L}'^{T} + \text{tr}(\mathbf{L}')\boldsymbol{\sigma}'\\ &=Q_{r}(\dot{\boldsymbol{\sigma}} - \mathbf{L}\boldsymbol{\sigma} - \boldsymbol{\sigma}\mathbf{L}^{T} + \text{tr}(\mathbf{L})\boldsymbol{\sigma})Q_{r}^{T}\\ &=Q_{r}\overset{\circ}{\boldsymbol{\sigma}}Q_{r}^{T}. \end{aligned} \end{equation} \end{split}\]