Tresca 屈服准则

Tresca 屈服准则#

Tresca 屈服准则被称为最大切应力理论,是最常用的屈服准则之一,属于各向同性屈服准则

Tresca 屈服准则,也称最大剪切应力准则:当某点的最大剪切应力达到临界值时,材料改点开始发生塑性变形

\[ \sigma_{\text{tresca}} = \max\left\{ |\sigma_1 - \sigma_2|, |\sigma_1 - \sigma_3|, |\sigma_2 - \sigma_3| \right\}\geq\sigma_{y}, \]

\(\sigma_{y}\)单轴拉伸下的屈服强度,于是在屈服面上

\[ \sigma_{1}=\sigma_{y},\quad\sigma_{2} = 0,\quad \sigma_{3} = 0, \]

得到

\[ \sigma_{\text{tresca}} = \sigma_{y}. \]

纯剪切变形下的屈服强度为 \(\tau_{y}\),于是在屈服面上

\[ \sigma_{1}=\tau_{y},\quad\sigma_{2} = 0,\quad \sigma_{3} = -\tau_{y}, \]

得到

\[ \sigma_{\text{tresca}} = 2\tau_{y}. \]

因此

\[ \sigma_{y} = 2\tau_{y}. \]

\(\sigma_{\text{tresca}}\) 也可以写为

\[ \sigma_{\text{tresca}} = \sigma_{\text{max}} - \sigma_{\text{min}}. \]

根据 Tresca 屈服准则,位于中间的主应力对屈服没有任何影响

不变量形式#

\[ 4J_2^3 - 27J_3^2 - 36k^2 J_2^2 + 96k^4 J_2 - 64\tau_{y}^6 = 0. \]

最大剪切应力#

设法向量为 \(\mathbf{n}\) 的平面上的应力为 \(\mathbf{t}_{\mathbf{n}}\),正应力为 \(\sigma_{n}\),切应力为 \(\tau_{\mathbf{n}}\),则

\[ \tau_{\mathbf{n}}^{2} = |\mathbf{t}_{\mathbf{n}}|^{2} - \sigma_{\mathbf{n}}^{2} = \mathbf{n}^{T}\boldsymbol{\sigma}^{2}\mathbf{n} - (\mathbf{n}^{T}\boldsymbol{\sigma}\mathbf{n})^{2}, \]

\(\mathbf{n}\) 沿 \(\boldsymbol{\sigma}\) 的单位特征向量 \(\mathbf{n}_{1},\mathbf{n}_{2},\mathbf{n}_{3}\) (对应的特征值分别为 \(\sigma_{1},\sigma_{2},\sigma_{3}\))分解

\[ \mathbf{n} = n_{1}\mathbf{n}_{1}+n_{2}\mathbf{n}_{3}+n_{2}\mathbf{n}_{3}, \]

其中 \(n_{1}^2+n_{2}^2+n_{3}^2=1\), 于是

(72)#\[ \tau_{\mathbf{n}}^2 = n_{1}^{2}\sigma_{1}^{2}+n_{2}^{2}\sigma_{2}^{2}+n_{3}^{2}\sigma_{3}^{2}-(n_{1}^{2}\sigma_{1}+n_{2}^{2}\sigma_{2}+n_{3}^{2}\sigma_{3})^2, \]

于是需在约束 \(n_{1}^2+n_{2}^2+n_{3}^2=1\) 下最大化 \(\tau_{\mathbf{n}}^2\),引入拉格朗日乘子 \(\lambda\),构造目标函数

\[ L = \tau_{\mathbf{n}}^2 - \lambda(n_{1}^2+n_{2}^2+n_{3}^2-1) \]

函数 \(L\)\(n_{1},n_{2},n_{3}\) 的导数为

(73)#\[\begin{split} \begin{equation} \begin{aligned} &(\sigma_{1}^2-2\sigma_{\mathbf{n}}\sigma_{1} - \lambda)n_{1}= 0 \\ &(\sigma_{2}^2-2\sigma_{\mathbf{n}}\sigma_{2} - \lambda)n_{2}= 0 \\ &(\sigma_{3}^2-2\sigma_{\mathbf{n}}\sigma_{3} - \lambda)n_{3}= 0 \end{aligned} \end{equation} \end{split}\]

不失一般性

1.\(n_{2}=n_{3}=0\),此时 \(n_{1}=\pm1\),代入到式 (72) 中,得到 \(\tau_{\mathbf{n}}=0\),显然不是最大值

2.\(n_{1}\neq0,n_{2}\neq0,n_{3}=0\),代入到式 (72) 中,得到

\[ \tau_{\mathbf{n}}^2 = n_{1}^2\sigma_{1}^2+n_{2}^2\sigma_{2}^2 - (n_{1}^2\sigma_{1}+n_{2}^2\sigma_{2})^2, \]

代入 \(n_{2}^2 = 1 - n_{1}^2\),并记 \(\ell = n_{1}^2\),于是

(74)#\[\begin{split} \begin{equation} \begin{aligned} \tau_{\mathbf{n}}^2 &= \ell\sigma_{1}^2+(1 - \ell)\sigma_{2}^2 - (\ell\sigma_{1}+(1 - \ell)\sigma_{2})^2\\ &=-(\sigma_{1}-\sigma_{2})^2\ell^2-(\sigma_{1}^2-\sigma_{2}^2 - 2(\sigma_{1}-\sigma_{2})\sigma_{2})\ell\\ &=-(\sigma_{1}-\sigma_{2})^2(\ell^2 - \ell), \end{aligned} \end{equation} \end{split}\]

因此,当 \(\ell = n_{1}^2=\frac{1}{2}\) 时,\(\tau_{\mathbf{n}}\) 取得极值,此时 \(n_{2}^2=\frac{1}{2}\),代入到式 (72),得到

\[ \tau_{\mathbf{n}} = \frac{1}{2}|\sigma_{1}-\sigma_{2}|. \]

截面法向量为

\[ (\pm\frac{\sqrt{2}}{2})\mathbf{n_{1}}+(\pm\frac{\sqrt{2}}{2})\mathbf{n}_{2}, \]

\(\sigma_{1}\) 截面和 \(\sigma_{2}\) 截面夹角为 \(45\)

3.\(n_{1}\neq0,n_{2}\neq0,n_{3}\neq0\),则此时 \(\sigma_{1},\sigma_{2},\sigma_{3}\) 都是二次方程 \(\sigma^2-2\sigma_{\mathbf{n}}\sigma - \lambda = 0\) 的根

  • \(\sigma_{1}=\sigma_{2}=\sigma_{3}\),此时 \(\boldsymbol{\sigma}\)

\[ \boldsymbol{\sigma} = Q^{T}(\sigma_{1}I)Q = \sigma_{1}I \quad\Longrightarrow\quad \tau_{\mathbf{n}}\equiv0 \]
  • \(\sigma_{1}=\sigma_{2}\neq\sigma_{3}\),此时

(75)#\[ \tau_{\mathbf{n}}^2 = (n_{1}^{2}+n_{2}^{2})\sigma_{1}^{2}+n_{3}^{2}\sigma_{3}^{2}-((n_{1}^{2}+n_{2}^{2})\sigma_{1}+n_{3}^{2}\sigma_{3})^2, \]

\(n_{1}^2+n_{2}^2 = \ell\),于是 \(n_{3}^2 = 1-\ell\),此时式 (75) 与式 (74) 有完全一样的形式,由此可知极值为

\[ \tau_{\mathbf{n}} = \frac{1}{2}|\sigma_{1}-\sigma_{3}|. \]

此时 \(n_{1}^2+n_{2}^2=n_{3}^2=\frac{1}{2}\),截面法向量为

\[ n_{1}\mathbf{n_{1}}+(\pm\sqrt{\frac{1}{2}-n_{1}^2})\mathbf{n}_{2}+(\pm\frac{\sqrt{2}}{2})\mathbf{n}_{3}, \]

\(\sigma_{3}\) 平面夹角为 \(45\)

综上,考虑到方程 (73) 的对称性,得到

\[ \max_{\mathbf{n}} \tau_{\mathbf{n}} = \frac{1}{2}\max\left\{ |\sigma_1 - \sigma_2|, |\sigma_2 - \sigma_3|, |\sigma_3 - \sigma_1| \right\}. \]

在截面与主应力面呈 \(45\) 度夹角的平面处达到