Return Mapping Algorithm(返回映射算法)是解决弹塑性材料本构积分问题的一种特定的、高效和鲁棒的数值积分策略,其核心思想是将复杂的弹塑性本构积分问题分解成两个更简单的步骤:
弹性预测
假设整个步长是弹性的,则
\[\begin{split}
\begin{equation}
\begin{aligned}
&\boldsymbol{\varepsilon}^{e, \text{trial}} = \boldsymbol{\varepsilon}_n^e + \Delta \boldsymbol{\varepsilon},\\
&\boldsymbol{\sigma}^{\text{trial}} = \mathbf{D}^e : \boldsymbol{\varepsilon}^{e, \text{trial}} = \boldsymbol{\sigma}_n + \mathbf{D}^e : \Delta \boldsymbol{\varepsilon}.
\end{aligned}
\end{equation}
\end{split}\]
同时塑性应变和硬化模量不变
\[
\boldsymbol{\varepsilon}_{n+1}^{p, \text{trial}} = \boldsymbol{\varepsilon}_n^p, \quad \bar{\varepsilon}_{n+1}^{p, \text{trial}} = \bar{\varepsilon}_n^p,
\]
计算屈服函数 \(\Phi^{\text{trial}}=f^{\text{trial}}\),若 \(f^{\text{trial}} \leq 0\):则步长内为弹性变形,接受预测值:
\[
\boldsymbol{\sigma}_{n+1} = \boldsymbol{\sigma}^{\text{trial}}, \quad
\boldsymbol{\varepsilon}_{n+1}^p = \boldsymbol{\varepsilon}_n^p, \quad
\bar{\varepsilon}_{n+1}^p = \bar{\varepsilon}_n^p.
\]
否则,进入塑性修正阶段
塑性修正
塑性修正的目标是将应力状态拉回到更新后的屈服面上,即找到 \(t_{n+1}\) 时刻满足下述方程的应力状态
\[\begin{split}
\begin{equation}
\begin{aligned}
&\boldsymbol{\varepsilon}^{e}_{n+1} = \boldsymbol{\varepsilon}^{e, \text{trial}} - \Delta\gamma\mathbf{N}_{n+1},\\
&\boldsymbol{\alpha}_{n+1} = \boldsymbol{\alpha}_{n} + \Delta\gamma\mathbf{H}(\boldsymbol{\sigma}_{n+1},\mathbf{A}_{n+1}),\\
&\Phi(\boldsymbol{\sigma}_{n+1}, \mathbf{A}_{n+1}) = 0,\\
&\Delta\gamma\geq0,
\end{aligned}
\end{equation}
\end{split}\]
上述方程组对于变量 \(\boldsymbol{\varepsilon}^{e}_{n+1},\boldsymbol{\alpha}_{n+1},\Delta\gamma\) 封闭
接下来以 Mises 屈服准则和关联流动法则为例,考虑小变形假设的情形
Mises 屈服函数
\[
f(\boldsymbol{\sigma},\boldsymbol{\alpha},\bar{\varepsilon}^{p})=\sqrt{\frac{3}{2}}\|\mathbf{s} - \boldsymbol{\alpha}\|-\sigma_{y}(\bar{\varepsilon}^{p}),
\]
关联流动法则
\[
\dot{\boldsymbol{\varepsilon}}^{p} = \dot{\gamma}\mathbf{N}=\dot{\gamma}\frac{\partial f}{\partial \boldsymbol{\sigma}},
\]
各向同性硬化
\(\boldsymbol{\alpha}\) 选为 \(\bar{\varepsilon}^{p}\),Mises 屈服函数为
\[
f(\boldsymbol{\sigma},\bar{\varepsilon}^{p})=\sqrt{\frac{3}{2}}\|\mathbf{s}\|-\sigma_{y}(\bar{\varepsilon}^{p}),
\]
此时 \(\mathbf{N} = \sqrt{\frac{3}{2}} \frac{\mathbf{s}}{\|\mathbf{s}\|}\),结合关联流动法则,有
\[
\dot{\bar{\varepsilon}}^{p}=\sqrt{\frac{2}{3}}\|\dot{\boldsymbol{\varepsilon}}^{p}\|=\sqrt{\frac{2}{3}}\|\dot{\gamma}\mathbf{N}\| =\dot{\gamma},
\]
其离散形式为
\[
\bar{\varepsilon}_{n+1}^p = \bar{\varepsilon}_n^p + \Delta \gamma,
\]
因此,求解方程组为
\[\begin{split}
\begin{equation}
\begin{aligned}
\boldsymbol{\varepsilon}^{e}_{n+1} &= \boldsymbol{\varepsilon}^{e, \text{trial}} - \Delta\gamma\mathbf{N}_{n+1},\\
\bar{\varepsilon}_{n+1}^p &= \bar{\varepsilon}_n^p + \Delta \gamma,\\
f_{n+1}&=\sqrt{\frac{3}{2}}\|\mathbf{s}_{n+1}\|-\sigma_{y}(\bar{\varepsilon}^{p}_{n+1})=0,
\end{aligned}
\end{equation}
\end{split}\]
求解变量为
\[
\boldsymbol{\varepsilon}_{n+1}^{e},\quad \bar{\varepsilon}_{n+1}^p,\quad \Delta \gamma
\]
方程组求解
这一非线性方程组可使用 Newton-Raphson 方法进行求解:
记 \(\mathbf{v} = \left[\boldsymbol{\varepsilon}=\boldsymbol{\varepsilon}_{n+1}^{e},\bar{\varepsilon}=\bar{\varepsilon}_{n+1}^p,\Delta \gamma\right]^{T}\),
记 \(\mathbf{r}=\left[\mathbf{r}_{\boldsymbol{\varepsilon}},r_{\bar{\varepsilon}},r_{f}\right]^{T}\),其中
\[\begin{split}
\begin{equation}
\begin{aligned}
\mathbf{r}_{\boldsymbol{\varepsilon}} &= \boldsymbol{\varepsilon}^{e}_{n+1} - \boldsymbol{\varepsilon}^{e, \text{trial}} + \Delta\gamma\mathbf{N}_{n+1},\\
r_{\bar{\varepsilon}}&=\bar{\varepsilon} - \bar{\varepsilon}_n^p - \Delta \gamma,\\
r_{f}&=\sqrt{\frac{3}{2}}\|\mathbf{s}_{n+1}\|-\sigma_{y}(\varepsilon),
\end{aligned}
\end{equation}
\end{split}\]
于是,Jacobian 矩阵为
\[\begin{split}
\begin{equation}
\mathbf{J} = \frac{\partial \mathbf{r}}{\partial \mathbf{v}}=
\begin{bmatrix}
\frac{\partial \mathbf{r}_{\boldsymbol{\varepsilon}}}{\partial \boldsymbol{\varepsilon}} & \frac{\partial \mathbf{r}_{\boldsymbol{\varepsilon}}}{\partial \bar{\varepsilon}} & \frac{\partial \mathbf{r}_{\boldsymbol{\varepsilon}}}{\partial \Delta \gamma} \\
\frac{\partial r_{\bar{\varepsilon}}}{\partial \boldsymbol{\varepsilon}} & \frac{\partial r_{\bar{\varepsilon}}}{\partial \bar{\varepsilon}} & \frac{\partial r_{\bar{\varepsilon}}}{\partial \Delta \gamma} \\
\frac{\partial r_{f}}{\partial \boldsymbol{\varepsilon}} & \frac{\partial r_{f}}{\partial \bar{\varepsilon}} & \frac{\partial r_{f}}{\partial \Delta \gamma}
\end{bmatrix}.
\end{equation}
\end{split}\]
初值可选为 \(\mathbf{v}^{(0)}=\left[\boldsymbol{\varepsilon}^{e, \text{trial}},\bar{\varepsilon}_{n}^p,0\right]\). 注意,\(\bar{\varepsilon}_{n}^p\) 使用的是当前时间步上一个外层非线性迭代的结果
单方程简化
Newton-Raphson 方法可以用于求解一般的非线性方程组。然而,由于在每一个高斯积分点都需要对非线性方程组进行求解,尤其在三维情况下,方程的维数达到 8,非线性求解的难度也较大,因此计算代价非常高。在某些特定情况下,可以通过消元,将方程组简化为单个方程,从而降低求解的复杂度
由于塑性流动不可压,因此
\[
\text{tr}(\dot{\boldsymbol{\varepsilon}})=0\quad \Longrightarrow\quad \text{tr}(\Delta\boldsymbol{\varepsilon})=0,
\]
故
\[
\mathbf{D}^e:\Delta\boldsymbol{\varepsilon} = 2G\ \text{dev}(\Delta\boldsymbol{\varepsilon})+K\text{tr}(\Delta\boldsymbol{\varepsilon})\mathbf{I}=2G\ \text{dev}(\Delta\boldsymbol{\varepsilon}),
\]
其中,\(\text{dev}(\cdot)\) 表示偏张量的部分,由于 \(\text{dev}(\Delta\boldsymbol{\varepsilon}^{p})=\Delta\boldsymbol{\varepsilon}^{p}\),故
\[
\mathbf{D}^e:(\Delta\gamma\mathbf{N}_{n+1})=\mathbf{D}^e:(\Delta\boldsymbol{\varepsilon}^{p})=2G\text{dev}(\Delta\boldsymbol{\varepsilon}^{p})=2G\Delta\boldsymbol{\varepsilon}^{p}=2G\Delta\gamma\mathbf{N}_{n+1},
\]
于是
\[
\boldsymbol{\sigma}_{n+1} = \boldsymbol{\sigma}^{\text{trial}} - 2G\Delta\gamma\sqrt{\frac{3}{2}} \frac{\mathbf{s}_{n+1}}{\|\mathbf{s}_{n+1}\|},
\]
从而
\[
\mathbf{s}_{n+1} = \mathbf{s}^{\text{trial}} - 2G\Delta\gamma\sqrt{\frac{3}{2}} \frac{\mathbf{s}_{n+1}}{\|\mathbf{s}_{n+1}\|},
\]
这表明 \(\mathbf{s}_{n+1}\) 和 \(\mathbf{s}^{\text{trial}}\) 同向,因此
\[
\frac{\mathbf{s}_{n+1}}{\|\mathbf{s}_{n+1}\|}=\frac{\mathbf{s}^{\text{trial}}}{\|\mathbf{s}^{\text{trial}}\|},
\]
于是
\[
\mathbf{s}_{n+1} = \left(1-\frac{\sqrt{6}G\Delta\gamma}{\|\mathbf{s}^{\text{trial}}\|}\right)\mathbf{s}^{\text{trial}},
\]
将上式和 \(\bar{\varepsilon}_{n+1}^p = \bar{\varepsilon}_n^p + \Delta \gamma\) 代入到屈服面函数,得到关于 \(\Delta\gamma\) 的方程
\[
\sqrt{\frac{3}{2}}\left(\|\mathbf{s}^{\text{trial}}\|-\sqrt{6}G\Delta\gamma\right)-\sigma_{y}(\bar{\varepsilon}_n^p + \Delta \gamma)=0,
\]
即
(92)\[
\sqrt{\frac{3}{2}}\|\mathbf{s}^{\text{trial}}\|-3G\Delta\gamma-\sigma_{y}(\bar{\varepsilon}_n^p + \Delta \gamma)=0.
\]
对于线性硬化,如
\[
\sigma_{y}(\bar{\varepsilon}_n^p + \Delta \gamma) = \sigma_{0} + H(\bar{\varepsilon}_n^p + \Delta \gamma),
\]
方程 (92) 是线性的;对于非线性硬化,方程是非线性的,通常使用 Newton-Rapshon 求解
\(\boldsymbol{\sigma}_{n+1} = \boldsymbol{\sigma}_{n+1}(\Delta\gamma)\)
\[\begin{split}
\begin{equation}
\begin{aligned}
\boldsymbol{\sigma}_{n+1} &= \boldsymbol{\sigma}^{\text{trial}} - 2G\Delta\gamma\sqrt{\frac{3}{2}} \frac{\mathbf{s}_{n+1}}{\|\mathbf{s}_{n+1}\|}\\
&=\mathbf{D}^e : \boldsymbol{\varepsilon}^{e, \text{trial}} - \sqrt{6}G\Delta\gamma\frac{\mathbf{s}^{\text{trial}}}{\|\mathbf{s}^{\text{trial}}\|}
\end{aligned}
\end{equation}
\end{split}\]
由于
\[
\boldsymbol{\sigma}^{\text{trial}} = \mathbf{D}^{e}:\boldsymbol{\varepsilon}^{e,\text{trial}}
\]
因此
\[
\begin{equation}
\begin{aligned}
\text{dev}(\boldsymbol{\sigma}^{\text{trial}}) + \frac{1}{3}\text{tr}(\boldsymbol{\sigma}^{\text{trial}})\mathbf{I} &= \mathbf{D}^{e}:(\text{dev}(\boldsymbol{\varepsilon}^{e,\text{trial}}) + \frac{1}{3}\text{tr}(\boldsymbol{\varepsilon}^{e,\text{trial}})\mathbf{I})
\end{aligned}
\end{equation}
\]
又
\[
\begin{equation}
\begin{aligned}
\mathbf{D}^{e}:\text{tr}(\boldsymbol{\varepsilon}^{e,\text{trial}})\mathbf{I} = \text{tr}(\boldsymbol{\sigma}^{\text{trial}})\mathbf{I}
\end{aligned}
\end{equation}
\]
故
\[\begin{split}
\begin{equation}
\begin{aligned}
\mathbf{s}^{\text{trial}}&=\text{dev}(\boldsymbol{\sigma}^{\text{trial}}) = \mathbf{D}^{e}:\text{dev}(\boldsymbol{\varepsilon}^{e,\text{trial}})\\
&=2G\text{dev}(\boldsymbol{\varepsilon}^{e,\text{trial}}) = 2G\mathbf{I}_{d}:\boldsymbol{\varepsilon}^{e,\text{trial}}
\end{aligned}
\end{equation}
\end{split}\]
其中,\(\mathbf{I}_{d}\) 是因此偏张量投影张量,于是
\[
\begin{equation}
\begin{aligned}
\boldsymbol{\sigma}_{n+1}=\left(\mathbf{D}^e - \frac{2\sqrt{6}G^{2}\Delta\gamma}{\|\mathbf{s}^{\text{trial}}\|}\mathbf{I}_{d}\right) : \boldsymbol{\varepsilon}^{e, \text{trial}}
\end{aligned}
\end{equation}
\]
由于 \(\|\mathbf{s}^{\text{trial}}\| = \sqrt{2J_{2}(\mathbf{s}^{\text{trial}})} = \sqrt{\frac{2}{3}}\cdot\sqrt{3J_{2}(\mathbf{s}^{\text{trial}})}\),代入上式最终得到
\[
\begin{equation}
\begin{aligned}
\boldsymbol{\sigma}_{n+1}=\left(\mathbf{D}^e - \frac{6G^{2}\Delta\gamma}{\sqrt{3J_{2}(\mathbf{s}^{\text{trial}})}}\mathbf{I}_{d}\right) : \boldsymbol{\varepsilon}^{e, \text{trial}}
\end{aligned}
\end{equation}
\]
其中,\(\sqrt{3J_{2}(\mathbf{s}^{\text{trial}})}\) 是试验等效应力
运动硬化
\(\boldsymbol{\alpha}\) 选为 \(\boldsymbol{\beta}\),Mises 屈服函数为
\[
f(\boldsymbol{\sigma},\boldsymbol{\beta})=\sqrt{\frac{3}{2}}\|\mathbf{s}-\boldsymbol{\beta}\|-\sigma_{y},
\]
此时 \(\mathbf{N} = \sqrt{\frac{3}{2}} \frac{\mathbf{s}-\boldsymbol{\beta}}{\|\mathbf{s}-\boldsymbol{\beta}\|}\),根据 Prager 运动硬化公式
\[
\mathrm{d}\boldsymbol{\beta}=C\mathrm{d}\gamma\mathbf{N}_{n+1},
\]
其中,\(C\) 是运动硬化模量,其离散形式为
\[
\boldsymbol{\beta}_{n+1}=\boldsymbol{\beta}_{n} + C\Delta\gamma\mathbf{N}_{n+1},
\]
因此,求解方程组为
\[\begin{split}
\begin{equation}
\begin{aligned}
\boldsymbol{\varepsilon}^{e}_{n+1} &= \boldsymbol{\varepsilon}^{e, \text{trial}} - \Delta\gamma\mathbf{N}_{n+1},\\
\boldsymbol{\beta}_{n+1}&=\boldsymbol{\beta}_{n} + C\Delta\gamma\mathbf{N}_{n+1},\\
f_{n+1}&=\sqrt{\frac{3}{2}}\|\mathbf{s}_{n+1}-\boldsymbol{\beta}_{n+1}\|-\sigma_{y}=0,
\end{aligned}
\end{equation}
\end{split}\]
求解变量为
\[
\boldsymbol{\varepsilon}^{e}_{n+1},\quad \boldsymbol{\beta}_{n+1},\quad \Delta \gamma
\]
使用 Newton-Raphson 方法求解方程组,初值可选为 \(\mathbf{v}^{(0)}=\left[\boldsymbol{\varepsilon}^{e, \text{trial}},\boldsymbol{\alpha}_{n},0\right]\). 注意,\(\boldsymbol{\alpha}_{n}\) 使用的是当前时间步上一个外层非线性迭代的结果
混合硬化
\(\boldsymbol{\alpha}\) 选为 \(\{\bar{\varepsilon}^{p},\boldsymbol{\beta}\}\),Mises 屈服函数为
\[
f(\boldsymbol{\sigma},\boldsymbol{\beta},\bar{\varepsilon}^{p})=\sqrt{\frac{3}{2}}\|\mathbf{s} - \boldsymbol{\beta}\|-\sigma_{y}(\bar{\varepsilon}^{p}),
\]
此时 \(\mathbf{N} = \sqrt{\frac{3}{2}} \frac{\mathbf{s}-\boldsymbol{\beta}}{\|\mathbf{s}-\boldsymbol{\beta}\|}\),结合各向同性硬化和 Prager 运动硬化公式,得到求解方程组为
\[\begin{split}
\begin{equation}
\begin{aligned}
\boldsymbol{\varepsilon}^{e}_{n+1} &= \boldsymbol{\varepsilon}^{e, \text{trial}} - \Delta\gamma\mathbf{N}_{n+1},\\
\bar{\varepsilon}_{n+1}^p &= \bar{\varepsilon}_n^p + \Delta \gamma,\\
\boldsymbol{\beta}_{n+1}&=\boldsymbol{\beta}_{n} + C\Delta\gamma\mathbf{N}_{n+1},\\
f_{n+1}&=\sqrt{\frac{3}{2}}\|\mathbf{s}_{n+1}-\boldsymbol{\beta}_{n+1}\|-\sigma_y \left( \bar{\varepsilon}_{n+1}^p \right)=0,
\end{aligned}
\end{equation}
\end{split}\]
求解变量为
\[
\boldsymbol{\varepsilon}^{e}_{n+1},\quad \bar{\varepsilon}_{n+1}^p,\quad \boldsymbol{\beta}_{n+1},\quad \Delta \gamma
\]
使用 Newton-Raphson 方法求解方程组,初值可选为 \(\mathbf{v}^{(0)}=\left[\boldsymbol{\varepsilon}^{e,\text{trial}},\bar{\varepsilon}_{n}^p,\boldsymbol{\beta}_{n},0\right]\). 注意,\(\bar{\varepsilon}_{n}^p,\boldsymbol{\beta}_{n}\) 使用的是当前时间步上一个外层非线性迭代的结果