隐式静力学#
相比于显式动力学方法,隐式静力学方法在实现上则复杂得多,其核心问题在于刚度矩阵的计算和本构积分中一致切线模量的计算
简便起见,先不考虑边界条件
几何线性#
首先考虑线性的位移-应变关系
\[
\boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla\mathbf{u}^{T}),
\]
此时,平衡方程的弱形式为
(18)#\[
\begin{equation}
\int_{\Omega_{n+1}} \boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n+1}
= \int_{\Omega_{n+1}}\mathbf{f}\cdot \mathbf{v}\,\mathrm{d}V_{n+1},
\end{equation}
\]
其中,积分区域 \(\Omega_{n+1}\) 未知,与 \(\mathbf{u}_{n+1}\) 相关
记从 \(\Omega_{n}\) 到 \(\Omega_{n+1}\) 的变形梯度矩阵为
\[
\mathbf{F} = \frac{\partial \mathbf{x}_{n+1}}{\partial \mathbf{x}_{n}} = I + \nabla \mathbf{u},
\]
其中,\(\mathbf{x}_{n+1}\) 和 \(\mathbf{x}_{n}\) 分别为 \(\Omega_{n+1}\) 和 \(\Omega_{n}\) 下的坐标系;注意,\(\mathbf{u}\) 表示从 \(\Omega_{n}\) 到 \(\Omega_{n+1}\) 的增量位移
于是,上述积分变为
(19)#\[
\begin{equation}
\int_{\Omega_{n+1}} \boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n+1} = \int_{\Omega_{n}} J\boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n},
\end{equation}
\]
其中,\(J=\det(\mathbf{F})\),此时,\(\boldsymbol{\sigma}\) 和 \(\boldsymbol{\varepsilon}\) 应使用 \(\Omega_{n}\) 下的坐标系 \(\mathbf{x}_{n}\) 表示
将其线性化,于是
\[\begin{split}
\begin{equation}
\begin{aligned}
\Delta\int_{\Omega_{n}} J\boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n}
&= \int_{\Omega_{n}} \Delta (J\boldsymbol{\sigma}):\boldsymbol{\varepsilon}(\mathbf{v}) + J\boldsymbol{\sigma}:\Delta \boldsymbol{\varepsilon}(\mathbf{v})\, \mathrm{d}V_{n}\\
&=\int_{\Omega_{n}} \Delta J\boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) + J\Delta \boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) + J\boldsymbol{\sigma}:\Delta \boldsymbol{\varepsilon}(\mathbf{v})\, \mathrm{d}V_{n}
\end{aligned}
\end{equation}
\end{split}\]
体积项#
类似于体积变化速率公式
\[
\dot{J} = J\ \text{tr}(\dot{\mathbf{F}}\mathbf{F}^{-1}),
\]
有
\[
\Delta J = J\ \text{tr}(\Delta \mathbf{F}\mathbf{F}^{-1}) = J\Delta \mathbf{F}:\mathbf{F}^{-T},
\]
其中
\[
\Delta \mathbf{F} = \frac{\partial
\Delta \mathbf{u}}{\partial \mathbf{x}_{n}} = \nabla_{n}\Delta \mathbf{u},
\]
应力变化项#
\[
\Delta \boldsymbol{\sigma} = \mathbb{C}_{\text{alg}}:\Delta \boldsymbol{\varepsilon},
\]
其中,\(\mathbb{C}_{\text{alg}}\) 是算法一致性切线模量,而
\[
\boldsymbol{\varepsilon}
= \frac{1}{2}(\nabla_{n+1} \mathbf{u} + \nabla_{n+1}\mathbf{u}^{T})
= \frac{1}{2}(\nabla_{n} \mathbf{u}\ \mathbf{F}^{-1} + \mathbf{F}^{-T}\nabla_{n}\mathbf{u}^{T}),
\]