隐式静力学#

相比于显式动力学方法,隐式静力学方法在实现上则复杂得多,其核心问题在于刚度矩阵的计算和本构积分中一致切线模量的计算

简便起见,先不考虑边界条件

几何线性#

首先考虑线性的位移-应变关系

\[ \boldsymbol{\varepsilon}(\mathbf{u}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla\mathbf{u}^{T}), \]

此时,平衡方程的弱形式为

(18)#\[ \begin{equation} \int_{\Omega_{n+1}} \boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n+1} = \int_{\Omega_{n+1}}\mathbf{f}\cdot \mathbf{v}\,\mathrm{d}V_{n+1}, \end{equation} \]

其中,积分区域 \(\Omega_{n+1}\) 未知,与 \(\mathbf{u}_{n+1}\) 相关

记从 \(\Omega_{n}\)\(\Omega_{n+1}\) 的变形梯度矩阵为

\[ \mathbf{F} = \frac{\partial \mathbf{x}_{n+1}}{\partial \mathbf{x}_{n}} = I + \nabla \mathbf{u}, \]

其中,\(\mathbf{x}_{n+1}\)\(\mathbf{x}_{n}\) 分别为 \(\Omega_{n+1}\)\(\Omega_{n}\) 下的坐标系;注意,\(\mathbf{u}\) 表示从 \(\Omega_{n}\)\(\Omega_{n+1}\) 的增量位移

于是,上述积分变为

(19)#\[ \begin{equation} \int_{\Omega_{n+1}} \boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n+1} = \int_{\Omega_{n}} J\boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n}, \end{equation} \]

其中,\(J=\det(\mathbf{F})\),此时,\(\boldsymbol{\sigma}\)\(\boldsymbol{\varepsilon}\) 应使用 \(\Omega_{n}\) 下的坐标系 \(\mathbf{x}_{n}\) 表示

将其线性化,于是

\[\begin{split} \begin{equation} \begin{aligned} \Delta\int_{\Omega_{n}} J\boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) \, \mathrm{d}V_{n} &= \int_{\Omega_{n}} \Delta (J\boldsymbol{\sigma}):\boldsymbol{\varepsilon}(\mathbf{v}) + J\boldsymbol{\sigma}:\Delta \boldsymbol{\varepsilon}(\mathbf{v})\, \mathrm{d}V_{n}\\ &=\int_{\Omega_{n}} \Delta J\boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) + J\Delta \boldsymbol{\sigma}:\boldsymbol{\varepsilon}(\mathbf{v}) + J\boldsymbol{\sigma}:\Delta \boldsymbol{\varepsilon}(\mathbf{v})\, \mathrm{d}V_{n} \end{aligned} \end{equation} \end{split}\]

体积项#

类似于体积变化速率公式

\[ \dot{J} = J\ \text{tr}(\dot{\mathbf{F}}\mathbf{F}^{-1}), \]

\[ \Delta J = J\ \text{tr}(\Delta \mathbf{F}\mathbf{F}^{-1}) = J\Delta \mathbf{F}:\mathbf{F}^{-T}, \]

其中

\[ \Delta \mathbf{F} = \frac{\partial \Delta \mathbf{u}}{\partial \mathbf{x}_{n}} = \nabla_{n}\Delta \mathbf{u}, \]

应力变化项#

\[ \Delta \boldsymbol{\sigma} = \mathbb{C}_{\text{alg}}:\Delta \boldsymbol{\varepsilon}, \]

其中,\(\mathbb{C}_{\text{alg}}\) 是算法一致性切线模量,而

\[ \boldsymbol{\varepsilon} = \frac{1}{2}(\nabla_{n+1} \mathbf{u} + \nabla_{n+1}\mathbf{u}^{T}) = \frac{1}{2}(\nabla_{n} \mathbf{u}\ \mathbf{F}^{-1} + \mathbf{F}^{-T}\nabla_{n}\mathbf{u}^{T}), \]

几何非线性#