\[
\dot{J} = J\ \text{tr}(\dot{F}F^{-1}) = J\ \text{tr}(\mathbf{L}) = J\ \text{tr}(\nabla\mathbf{v}) = J\ (\nabla\cdot\mathbf{v}),
\]
\[
J = 1 \Rightarrow \dot{J} = 1 \Rightarrow \text{tr}(\nabla\mathbf{v}) = \nabla\cdot\mathbf{v} = 0.
\]
证明一
\[
J = \det(F) = \sum_{i,j,k=1}^{3}\varepsilon_{ijk}\frac{\partial x_{1}}{\partial X_{i}}\frac{\partial x_{2}}{\partial X_{j}}\frac{\partial x_{3}}{\partial X_{k}},
\]
对 \(t\) 求导
\[
\dot{J} = \sum_{i,j,k=1}^{3}\varepsilon_{ijk}\left(\frac{\partial \dot{x}_{1}}{\partial X_{i}}\frac{\partial x_{2}}{\partial X_{j}}\frac{\partial x_{3}}{\partial X_{k}} + \frac{\partial x_{1}}{\partial X_{i}}\frac{\partial \dot{x}_{2}}{\partial X_{j}}\frac{\partial x_{3}}{\partial X_{k}} + \frac{\partial x_{1}}{\partial X_{i}}\frac{\partial x_{2}}{\partial X_{j}}\frac{\partial \dot{x}_{3}}{\partial X_{k}}\right),
\]
代入
\[
\frac{\partial \dot{x}_{k}}{\partial X_{l}} = \sum_{i=1}^{3}\frac{\partial \dot{x}_{k}}{\partial x_{i}}\frac{\partial x_{i}}{\partial X_{l}},
\]
由于
\[
\sum_{i,j,k=1}^{3} \varepsilon_{ijk}
\frac{\partial x_a}{\partial X_i}
\frac{\partial x_a}{\partial X_j}
\frac{\partial x_b}{\partial X_k}
=
\sum_{i,j,k=1}^{3} \varepsilon_{ijk}
\frac{\partial x_b}{\partial X_i}
\frac{\partial x_b}{\partial X_j}
\frac{\partial x_a}{\partial X_k}
=
\sum_{i,j,k=1}^{3} \varepsilon_{ijk}
\frac{\partial x_a}{\partial X_i}
\frac{\partial x_b}{\partial X_j}
\frac{\partial x_a}{\partial X_k}
=0,
\]
于是
\[
\dot{J} = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} \left(
\frac{\partial \dot{x}_1}{\partial x_1} \frac{\partial x_1}{\partial X_i} \frac{\partial x_2}{\partial X_j} \frac{\partial x_3}{\partial X_k}
+
\frac{\partial \dot{x}_2}{\partial x_2} \frac{\partial x_1}{\partial X_i} \frac{\partial x_2}{\partial X_j} \frac{\partial x_3}{\partial X_k}
+
\frac{\partial \dot{x}_3}{\partial x_3} \frac{\partial x_1}{\partial X_i} \frac{\partial x_2}{\partial X_j} \frac{\partial x_3}{\partial X_k}
\right),
\]
故
\[
\dot{J} = J\ \left(\frac{\partial \dot{x}_1}{\partial x_1} + \frac{\partial \dot{x}_2}{\partial x_2} + \frac{\partial \dot{x}_3}{\partial x_3}\right) = J\ \text{tr}(\mathbf{L}).
\]
证明二
设 \(\mathbf{a},\mathbf{b},\mathbf{c}\in\mathbb{R}^{3}\) 是三个线性无关的向量,则
\[
J = \det(F) = \frac{F\mathbf{a}\cdot(F\mathbf{b}\times F\mathbf{c})}{\mathbf{a}\cdot(\mathbf{b}\times \mathbf{c})}
=
\frac{\det\left(\begin{bmatrix}
F\mathbf{a}&F\mathbf{b}&F\mathbf{c}
\end{bmatrix}\right)}{
\det\left(\begin{bmatrix}
\mathbf{a}&\mathbf{b}&\mathbf{c}
\end{bmatrix}\right)
},
\]
于是
\[\begin{split}
\begin{equation}
\begin{aligned}
\dot{J} &= \frac{\dot{F}\mathbf{a} \cdot (F\mathbf{b} \times F\mathbf{c}) + F\mathbf{a} \cdot (\dot{F}\mathbf{b} \times F\mathbf{c}) + F\mathbf{a} \cdot (F\mathbf{b} \times \dot{F}\mathbf{c})}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}\\
&=\frac{\dot{F}F^{-1}F\mathbf{a} \cdot (F\mathbf{b} \times F\mathbf{c}) + F\mathbf{a} \cdot (\dot{F}F^{-1}F\mathbf{b} \times F\mathbf{c}) + F\mathbf{a} \cdot (F\mathbf{b} \times \dot{F}F^{-1}F\mathbf{c})}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})}\\
&=\frac{\dot{F}F^{-1}F\mathbf{a} \cdot (F\mathbf{b} \times F\mathbf{c}) + F\mathbf{a} \cdot (\dot{F}F^{-1}F\mathbf{b} \times F\mathbf{c}) + F\mathbf{a} \cdot (F\mathbf{b} \times \dot{F}F^{-1}F\mathbf{c})}{F\mathbf{a} \cdot (F\mathbf{b} \times F\mathbf{c})}\frac{F\mathbf{a} \cdot (F\mathbf{b} \times F\mathbf{c})}{a \cdot (\mathbf{b} \times \mathbf{c})}\\
&=J\ \text{tr}(\dot{F}F^{-1})\\
&= J\ \text{tr}(\mathbf{L}).
\end{aligned}
\end{equation}
\end{split}\]
注:
\[
\frac{M\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) + \mathbf{a} \cdot (M\mathbf{b} \times \mathbf{c}) + \mathbf{a} \cdot (\mathbf{b} \times M\mathbf{c})}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})} = \text{tr}(M)
\]
证明:
由于
\[\begin{split}
\begin{equation}
\begin{aligned}
M\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) &= \det(\begin{bmatrix}M\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}),\\
\mathbf{a} \cdot (M\mathbf{b} \times \mathbf{c}) &= \det(\begin{bmatrix}a & M\mathbf{b} & \mathbf{c}\end{bmatrix}),\\
\mathbf{a} \cdot (\mathbf{b} \times M\mathbf{c}) &= \det(\begin{bmatrix}a & \mathbf{b} & M\mathbf{c}\end{bmatrix}),
\end{aligned}
\end{equation}
\end{split}\]
记 \(M = \begin{bmatrix}\mathbf{m}_{1} & \mathbf{m}_{2} & \mathbf{m}_{3}\end{bmatrix}\),于是
\[\begin{split}
\begin{equation}
\begin{aligned}
\det(\begin{bmatrix}M\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}) & =a_{1}\det(\begin{bmatrix}\mathbf{m}_{1} & \mathbf{b} & \mathbf{c}\end{bmatrix}) + a_{2}\det(\begin{bmatrix}\mathbf{m}_{2} & \mathbf{b} & \mathbf{c}\end{bmatrix}) + a_{3}\det(\begin{bmatrix}\mathbf{m}_{3} & \mathbf{b} & \mathbf{c}\end{bmatrix}),\\
\det(\begin{bmatrix}\mathbf{a} & M\mathbf{b} & \mathbf{c}\end{bmatrix}) & =b_{1}\det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{1} & \mathbf{c}\end{bmatrix}) + b_{2}\det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{2} & \mathbf{c}\end{bmatrix}) + b_{3}\det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{3} & \mathbf{c}\end{bmatrix}),\\
\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & M\mathbf{c}\end{bmatrix}) & =c_{1}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{1}\end{bmatrix}) + c_{2}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{2}\end{bmatrix}) + c_{3}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{3}\end{bmatrix}),
\end{aligned}
\end{equation}
\end{split}\]
其中,根据克拉默法则,式
\[
\det(\begin{bmatrix}\mathbf{m}_{1} & \mathbf{b} & \mathbf{c}\end{bmatrix}), \quad \det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{1} & \mathbf{c}\end{bmatrix}), \quad \det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{1}\end{bmatrix})
\]
是线性方程组
\[
\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}\mathbf{x} = \det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}) \cdot \mathbf{m}_{1}
\]
的解,即
\[
\begin{equation}
\begin{aligned}
&\det(\begin{bmatrix}\mathbf{m}_{1} & \mathbf{b} & \mathbf{c}\end{bmatrix})\cdot\mathbf{a} + \det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{1} & \mathbf{c}\end{bmatrix})\cdot \mathbf{b} + \det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{1}\end{bmatrix})\cdot\mathbf{c}
=\mathbf{m}_{1} \cdot \det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}),
\end{aligned}
\end{equation}
\]
于是,根据向量第一项的等式,得到
\[
a_{1}\det(\begin{bmatrix}\mathbf{m}_{1} & \mathbf{b} & \mathbf{c}\end{bmatrix}) + b_{1}\det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{1} & \mathbf{c}\end{bmatrix}) + c_{1}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{1}\end{bmatrix}) = m_{11}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}).
\]
类似地,对于第二列和第三列,有
\[\begin{split}
\begin{equation}
\begin{aligned}
a_{2}\det(\begin{bmatrix}\mathbf{m}_{2} & \mathbf{b} & \mathbf{c}\end{bmatrix}) + b_{2}\det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{2} & \mathbf{c}\end{bmatrix}) + c_{2}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{2}\end{bmatrix}) = m_{22}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}),\\
a_{3}\det(\begin{bmatrix}\mathbf{m}_{3} & \mathbf{b} & \mathbf{c}\end{bmatrix}) + b_{3}\det(\begin{bmatrix}\mathbf{a} & \mathbf{m}_{3} & \mathbf{c}\end{bmatrix}) + c_{3}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{m}_{3}\end{bmatrix}) = m_{33}\det(\begin{bmatrix}\mathbf{a} & \mathbf{b} & \mathbf{c}\end{bmatrix}),
\end{aligned}
\end{equation}
\end{split}\]
代入即可