几何方程

几何方程#

几何方程揭示了应变与位移之间的内在联系。应变的本质源于不同点之间相对位置的变化。因此,通过分析不同方向上两条线段端点的相对位置变化,可以推导出应变与位移的关系方程

考虑弹性体内任一点 \(P\),沿 \(x\) 轴和 \(y\) 轴的正方向取两个微小线段\(\overline{PA} = \mathrm{d}x \)\(\overline{PA} = \mathrm{d}y\),假定弹性体受力后 \(P,A,B\) 三点分别移动到了 \(P^`,A^`,B^`\)

../../../_images/displ_strain.png

Fig. 29 位移和应变关系示意图#

\[\begin{split} \begin{equation} \begin{aligned} u(P)&=u(x_{P},y_{P}),\\ u(A)&=u(x_{A},y_{A})=u(x_{P}+\mathrm{d}x,y_{P}) \approx u(x_{P},y_{P}) + \frac{\partial u}{\partial x}(x_P,y_P)\cdot\mathrm{d}x,\\ u(B)&=u(x_{B},y_{B})=u(x_{P},y_{P}+\mathrm{d}y) \approx u(x_{P},y_{P}) + \frac{\partial u}{\partial y}(x_P,y_P)\cdot\mathrm{d}y,\\ v(P)&=v(x_{P},y_{P}),\\ v(A)&=v(x_{A},y_{A})=v(x_{P}+\mathrm{d}x,y_{P}) \approx v(x_{P},y_{P}) + \frac{\partial v}{\partial x}(x_P,y_P)\cdot\mathrm{d}x,\\ v(B)&=v(x_{B},y_{B})=v(x_{P},y_{P}+\mathrm{d}y) \approx v(x_{P},y_{P}) + \frac{\partial v}{\partial y}(x_P,y_P)\cdot\mathrm{d}y.\\ \end{aligned} \end{equation} \end{split}\]

于是,\(\overline{PA}\) 的线应变为

\[ \varepsilon_{xx} = \frac{\left( u + \frac{\partial u}{\partial x} \, \mathrm{d}x \right) - u}{\mathrm{d}x} = \frac{\partial u}{\partial x}, \]

类似地,\(\overline{PB}\) 的线应变为

\[ \varepsilon_{yy} = \frac{\partial v}{\partial y}. \]

对于 \(\overline{PA}\) 的转角 \(\alpha\)

\[ \alpha = \frac{\left( v + \frac{\partial v}{\partial x} \, \mathrm{d}x \right) - v}{\mathrm{d}x} = \frac{\partial v}{\partial x}, \]

类似地,\(\overline{PB}\) 的转角

\[ \beta = \frac{\partial u}{\partial y}, \]

于是切应变 \(\gamma_{xy}\)

\[ \gamma_{xy} = \alpha + \beta = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}. \]

将几何方程整理如下

(33)#\[\begin{split} \begin{equation} \begin{aligned} &\varepsilon_{xx} = \frac{\partial u}{\partial x}, \\ &\varepsilon_{yy} = \frac{\partial v}{\partial y}, \\ &\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}. \end{aligned} \end{equation} \end{split}\]

可以写为

\[ \boldsymbol{\varepsilon} = (\nabla \mathbf{u} + (\nabla\mathbf{u})^{T})/2, \]

其中,\(\boldsymbol{\varepsilon}\) 是应变张量,\(\mathbf{u} = [u\,v]^{T}\) 是位移向量,即

\[\begin{split} \begin{equation} \boldsymbol{\varepsilon}= \begin{bmatrix} \varepsilon_{xx} & \varepsilon_{xy} \\ \varepsilon_{yx} & \varepsilon_{yy} \end{bmatrix} = \frac{1}{2}(\begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix} + \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial v}{\partial x} \\ \frac{\partial u}{\partial y} & \frac{\partial v}{\partial y} \end{bmatrix}), \end{equation} \end{split}\]

也可以写为 Voigt 形式

\[\begin{split} \begin{equation} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ 2\varepsilon_{xy} \end{bmatrix} =\begin{bmatrix} \frac{\partial }{\partial x} & 0 \\ 0 & \frac{\partial }{\partial y} \\ \frac{\partial }{\partial y} & \frac{\partial }{\partial x} \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}. \end{equation} \end{split}\]

对于三维情形,有

\[\begin{split} \begin{equation} \begin{bmatrix} \varepsilon_{xx}\\\varepsilon_{yy}\\\varepsilon_{zz}\\2\varepsilon_{xy}\\2\varepsilon_{yz}\\2\varepsilon_{zx} \end{bmatrix} =\begin{bmatrix} \frac{\partial}{\partial x} & 0 & 0 \\ 0 & \frac{\partial}{\partial y} & 0 \\ 0 & 0 & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \end{bmatrix} \begin{bmatrix} u_{x}\\u_{y}\\u_{z} \end{bmatrix}. \end{equation} \end{split}\]