各向同性硬化模型

各向同性硬化模型#

各向同性硬化模型假设屈服函数是应力的各向同性函数,即在整个塑性变形过程中,屈服面以其中心为原点(位置不变),保持形状不变地向外均匀膨胀,反映了材料在各个方向上的屈服行为一致

在整个变形过程中,屈服面是应力的各向同性函数,并假设屈服函数的数学形式保持不变,同时通过引入与变形历史相关的标量参数 \(K\) 来定义当前屈服面的大小,即

\[ f(\boldsymbol{\sigma},K) = 0, \]

其中

\[ K = K(\vartheta), \]

\(\vartheta\) 是历史变形参数,通常取为一般化的塑性应变

\[ \vartheta = \int_0^t \left( 2 \mathbf{D}^p : \mathbf{D}^p \right)^{1/2} dt. \]

根据持续塑性变形的一致性条件,应力状态应始终在屈服面上

\[ \dot{f} = \frac{\partial f}{\partial \boldsymbol{\sigma}} : \overset{\nabla}{\boldsymbol{\tau}} + \frac{\partial f}{\partial K} \frac{\partial K}{\partial \vartheta} \dot{\vartheta} = 0, \]

由于

\[ \dot{\vartheta} = \left( 2 \mathbf{D}^p : \mathbf{D}^p \right)^{1/2} = \frac{1}{H} \left( 2 \frac{\partial f}{\partial \boldsymbol{\sigma}} : \frac{\partial f}{\partial \boldsymbol{\sigma}} \right)^{1/2} \left( \frac{\partial f}{\partial \boldsymbol{\sigma}} : \overset{\nabla}{\boldsymbol{\tau}} \right), \]

代入到上式,得到

\[ H = -\frac{\partial f}{\partial K} \frac{dK}{d\vartheta} \left( 2 \frac{\partial f}{\partial \boldsymbol{\sigma}} : \frac{\partial f}{\partial \boldsymbol{\sigma}} \right)^{1/2}. \]

\(J_{2}\) 塑性流动理论#

使用 von Mises 类屈服准则

\[ f = J_{2} - k^2(\vartheta) = 0,\quad J_{2} = \frac{1}{2}\mathbf{s}:\mathbf{s}, \]

由于

\[ \frac{\partial f}{\partial \boldsymbol{\sigma}} = \frac{\partial J_{2}}{\partial\boldsymbol{\sigma}} = \mathbf{s}, \]

因此

\[ H=2k\frac{\mathrm{d}k}{\mathrm{d} \vartheta}(2\mathbf{s}:\mathbf{s}) = 4k\frac{\mathrm{d}k}{\mathrm{d} \vartheta}\sqrt{J_{2}}, \]

由于材料在屈服面上,有 \(J_{2} = k^2(\vartheta)\),故

\[ H=4k^2\frac{\mathrm{d}k}{\mathrm{d} \vartheta}, \]

其中,\(h_{\text{t}}^{\text{p}}=\frac{\mathrm{d}k}{\mathrm{d} \vartheta}\)纯剪切变形中的塑性切线模量

根据式 (intro-eq:strain-p),得到

\[ \mathbf{D}^{\text{p}} = \frac{1}{H} \left( \frac{\partial f}{\partial \boldsymbol{\sigma}} : \overset{\nabla}{\boldsymbol{\tau}} \right) \frac{\partial f}{\partial \boldsymbol{\sigma}} = \frac{1}{H} \left( \mathbf{s} : \overset{\nabla}{\boldsymbol{\tau}} \right) \mathbf{s}, \]

因此,\(\text{tr}(\mathbf{D}^{\text{p}}) = 0\),这表明塑性部分的体积应变率为零

由于

\[\begin{split} \begin{equation} \begin{aligned} \mathbf{D}^{\text{p}} &= \frac{1}{4k^2h_{\text{t}}^{\text{p}}}(\mathbf{s}\otimes\mathbf{s}):\overset{\nabla}{\boldsymbol{\tau}}\\ &=\frac{1}{2h_{\text{t}}^{\text{p}}}\frac{\mathbf{s}\otimes\mathbf{s}}{\mathbf{s}:\mathbf{s}}:\overset{\nabla}{\boldsymbol{\tau}}, \end{aligned} \end{equation} \end{split}\]

因此,总应变率张量为

\[ \mathbf{D} = \left(\mathbf{M}^{\text{e}} + \frac{1}{2h_{\text{t}}^{\text{p}}}\frac{\mathbf{s}\otimes\mathbf{s}}{\mathbf{s}:\mathbf{s}}\right):\overset{\nabla}{\boldsymbol{\tau}}. \]

其逆形式为

\[ \overset{\nabla}{\boldsymbol{\tau}} = \left( \boldsymbol{\Lambda}^{\text{e}} - \frac{2\mu}{1 + h_{\text{t}}^{\text{p}}/\mu} \frac{\mathbf{s}\otimes\mathbf{s}}{\mathbf{s} : \mathbf{s}} \right) : \mathbf{D}. \]

\(\mathbf{D}^{\text{p}}\) 可以写为

\[\begin{split} \\ \mathbf{D}^{\text{p}}=\frac{1}{2h_{\text{t}}^{\text{p}}}\frac{\mathbf{s}\otimes\mathbf{s}}{\mathbf{s}:\mathbf{s}}:\overset{\nabla}{\boldsymbol{\tau}}=\frac{1}{2h_{\text{t}}^{\text{p}}}\frac{\mathbf{s}:\overset{\nabla}{\boldsymbol{\tau}}}{\mathbf{s}:\mathbf{s}}\ \mathbf{s}, \end{split}\]

由于

\[ \mathbf{s}:\overset{\nabla}{\boldsymbol{\tau}} =\frac{2h_{\text{t}}^{\text{p}}}{1+h_{\text{t}}^{\text{p}}/\mu}\ \mathbf{s}:\mathbf{D}, \]

\[ \mathbf{D}^{\text{p}}=\frac{1}{1+h_{\text{t}}^{\text{p}}/\mu}\ \frac{\mathbf{s}:\mathbf{D}}{\mathbf{s}:\mathbf{s}}\ \mathbf{s}. \]

在硬化范围的塑性加载阶段,有

\[ \frac{\partial f}{\partial \boldsymbol{\sigma}} : \overset{\nabla}{\boldsymbol{\tau}} = \mathbf{s}:\overset{\nabla}{\boldsymbol{\tau}} > 0, \]

因此,在 \(\mu>0\)\(h_{\text{t}}^{\text{p}}>0\)

\[ \mathbf{s}:\mathbf{D}>0. \]