大变形弹塑性问题-参考构型法

大变形弹塑性问题-参考构型法#

参考构型法是一种以材料初始状态为基准进行力学分析的方法,常用于大变形问题。该方法通过建立初始构型与当前构型之间的映射关系,利用变形梯度、格林-拉格朗日应变和第二类 Piola-Kirchhoff 应力等张量,在参考构型下描述材料的应力和应变,能够有效处理大变形过程中的力学行为,保证理论的物理一致性

求解方程#

运动关系

变形梯度矩阵

\[ \mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{X}} = \mathbf{I} + \nabla_{X}\mathbf{u}, \]

平衡方程(动量守恒方程):

\[ \begin{equation} \nabla_{x}\cdot \boldsymbol{\sigma} + \mathbf{f} = \rho\ddot{\mathbf{u}} + c\dot{\mathbf{u}}, \end{equation} \]

其中

\[ \boldsymbol{\sigma} = J^{-1}\mathbf{F}\mathbf{S}\mathbf{F}^{T}, \]

\(\mathbf{S}\) 是 PK2 应力

几何方程

\[ \mathbf{E} = \frac{1}{2}(\mathbf{F}^{T}\mathbf{F}-\mathbf{I}), \]

应变分解

\[ \mathbf{F}=\mathbf{F}^{e}\mathbf{F}^{p}, \]

弹塑性本构关系

\[ \mathbf{S} = \frac{\partial \Psi(\mathbf{E}^{e})}{\partial \mathbf{E}^{e}} = \mathbb{C} : \mathbf{E}^{e}, \]

其中,\(\mathbf{E}^{e} = \frac{1}{2}(\mathbf{F}^{eT}\mathbf{F}^{e}-\mathbf{I})\)

屈服准则

例如,对于经典的 Mises 准则

\[ \begin{equation} f(\mathbf{S}, \bar{\varepsilon}^p) = \sqrt{\frac{3}{2} \mathbf{S}' : \mathbf{S}'} - \sigma_y(\bar{\varepsilon}^p), \end{equation} \]

等效塑性应变通常定义为

\[ \begin{equation} \dot{\bar{\varepsilon}}^{p} = \sqrt{\frac{2}{3} \dot{\mathbf{E}}^p : \dot{\mathbf{E}}^p}=\dot{\gamma}. \end{equation} \]

塑性流动法则

例如,考虑关联性流动法则

\[ \dot{\mathbf{E}}^{p}=\dot{\gamma}\frac{\partial f}{\partial \mathbf{S}}, \]

硬化规律

例如,对于线性硬化

\[ \begin{equation} \sigma_y(\bar{\varepsilon}^p) = \sigma_{y0} + H\bar{\varepsilon}^{p}, \end{equation} \]

其中,\(\sigma_{y0}\) 是初始屈服强度,\(H\) 是硬化模量

Kuhn-Tucker 条件

\[ \begin{equation} f(\mathbf{S}) \leq 0, \quad \dot{\gamma} \geq 0, \quad \dot{\gamma} f(\mathbf{S}) = 0, \end{equation} \]

边界条件

描述边界载荷的三类边界条件,它们定义在当前构型上

\[\begin{split} \begin{equation} \begin{aligned} \mathbf{u} &= \tilde{\mathbf{u}},\quad &\text{on}\,\, \Gamma_{D},\\ \boldsymbol{\sigma}\mathbf{n} &= \tilde{\mathbf{p}},\quad &\text{on}\,\, \Gamma_{N},\\ \boldsymbol{\sigma}\mathbf{n} + \alpha\mathbf{u} &= \mathbf{f}_{R},\quad &\text{on}\,\, \Gamma_{R}. \end{aligned} \end{equation} \end{split}\]

初始条件

\[ \mathbf{u}(\mathbf{x},0) = \mathbf{u}_{0}(\mathbf{x}),\quad \dot{\mathbf{u}}(\mathbf{x},0) = \dot{\mathbf{u}_{0}}(\mathbf{x}). \]

有限元弱形式#

有限元弱形式为

\[\begin{split} \begin{equation} \begin{aligned} \int_{\Omega}\rho\ddot{\mathbf{u}}\cdot\mathbf{v} \, \mathrm{d}V +\int_{\Omega}c\dot{\mathbf{u}}\cdot\mathbf{v} \, \mathrm{d}V +\int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) : \boldsymbol{\sigma} \, \mathrm{d}V +\int_{\Gamma_{R}} \alpha\mathbf{u} \cdot \mathbf{v} \, \mathrm{d}S\\ = \int_{\Omega}\mathbf{f}\cdot \mathbf{v}\,\mathrm{d}V + \int_{\Gamma_{N}} \tilde{\mathbf{p}} \cdot \mathbf{v} \, \mathrm{d}S + \int_{\Gamma_{R}} \mathbf{f}_{R} \cdot \mathbf{v} \, \mathrm{d}S,\quad \forall \, \mathbf{v} \in \, \mathcal{V}, \end{aligned} \end{equation} \end{split}\]

其中,\(\mathbf{v}\in\mathcal{V}\) 是试验函数,\(\mathbf{u} = \mathbf{\tilde{u}},\, \text{on}\, \Gamma_{D}\)

上式中,积分在当前构型 \(\Omega\)(未知)中进行,将其转换到初始构型 \(\Omega_{0}\)

体元转换

\[ \mathrm{d}V = J\mathrm{d}V_{0}, \]

面元转换

\[ \mathbf{n}\mathrm{d}S = J\mathbf{F}^{-T}\mathbf{N}\mathrm{d}S_{0}\quad \Longrightarrow\quad \mathrm{d}S = J\|\mathbf{F}^{-T}\mathbf{N}\|\mathrm{d}S_{0} \]

物理量变换

将相关物理量转换到初始构型上

\[\begin{split} \begin{equation} \begin{aligned} &\rho J = \rho_{0},\quad cJ=c_{0},\quad \mathbf{f}J = \mathbf{f}_{0},\\ &\alpha J\|\mathbf{F}^{-T}\mathbf{N}\|=\alpha_{0},\\ &\tilde{\mathbf{p}} J\|\mathbf{F}^{-T}\mathbf{N}\|=\tilde{\mathbf{p}}_{0},\\ &\mathbf{F}_{R} J\|\mathbf{F}^{-T}\mathbf{N}\|=\mathbf{F}_{R_{0}}, \end{aligned} \end{equation} \end{split}\]

于是

\[\begin{split} \begin{equation} \begin{aligned} &\int_{\Omega}\rho\ddot{\mathbf{u}}\cdot\mathbf{v}\mathrm{d}V = \int_{\Omega_{0}}\rho_{0}\ddot{\mathbf{u}}\cdot\mathbf{v}\mathrm{d}V_{0},\\ &\int_{\Omega}c\dot{\mathbf{u}}\cdot\mathbf{v} \, \mathrm{d}V=\int_{\Omega_{0}}c_{0}\dot{\mathbf{u}}\cdot\mathbf{v} \, \mathrm{d}V_{0},\\ &\int_{\Omega}\mathbf{f}\cdot\mathbf{v} \, \mathrm{d}V=\int_{\Omega_{0}}\mathbf{f}_{0}\cdot\mathbf{v} \, \mathrm{d}V_{0},\\ &\int_{\Gamma_{R}} \alpha\mathbf{u} \cdot \mathbf{v} \, \mathrm{d}S=\int_{\Gamma_{R_{0}}} \alpha_{0}\mathbf{u} \cdot \mathbf{v} \, \,\mathrm{d}S_{0},\\ &\int_{\Gamma_{N}} \tilde{\mathbf{p}} \cdot \mathbf{v} \, \mathrm{d}S=\int_{\Gamma_{N_{0}}} \tilde{\mathbf{p}}_{0} \cdot \mathbf{v} \, \,\mathrm{d}S_{0},\\ &\int_{\Gamma_{R}} \mathbf{f}_{R} \cdot \mathbf{v} \, \mathrm{d}S=\int_{\Gamma_{R_{0}}} \mathbf{f}_{R_{0}} \cdot \mathbf{v}\,\mathrm{d}S_{0},\\ &\int_{\Omega} \boldsymbol{\varepsilon}(\mathbf{v}) : \boldsymbol{\sigma} \, \mathrm{d}V = \int_{\Omega_{0}} \delta\mathbf{E}:\mathbf{S} \, \mathrm{d}V_{0}. \end{aligned} \end{equation} \end{split}\]

最终,合并所有的式子,得到初始构型上的弱形式

\[\begin{split} \begin{equation} \begin{aligned} &\int_{\Omega_{0}}\rho_{0}\ddot{\mathbf{u}}\cdot\mathbf{v}\mathrm{d}V_{0} +\int_{\Omega_{0}}c_{0}\dot{\mathbf{u}}\cdot\mathbf{v} \, \mathrm{d}V_{0} +\int_{\Omega_{0}} \delta\mathbf{E}:\mathbf{S} \, \mathrm{d}V_{0} +\int_{\Gamma_{R_{0}}} \alpha_{0}\mathbf{u} \cdot \mathbf{v} \, \,\mathrm{d}S_{0} \\ &=\int_{\Omega_{0}}\mathbf{f}_{0}\cdot\mathbf{v} \, \mathrm{d}V_{0} +\int_{\Gamma_{N_{0}}} \tilde{\mathbf{p}}_{0} \cdot \mathbf{v} \, \,\mathrm{d}S_{0}+\int_{\Gamma_{R_{0}}} \mathbf{f}_{R_{0}} \cdot \mathbf{v} \,\mathrm{d}S_{0},\quad \forall \, \mathbf{v} \in \, \mathcal{V}, \end{aligned} \end{equation} \end{split}\]

有限元离散形式#

空间离散#

由于

\[ \mathbf{F} = \frac{\partial (\mathbf{X} + \mathbf{u})}{\partial \mathbf{X}} = \mathbf{I} + \nabla_{X}\mathbf{u}, \]

\[\begin{split} \begin{equation} \begin{aligned} \delta\mathbf{E}&=\frac{1}{2}\left(\nabla_{X}\mathbf{v}_{*,i}^{T}\mathbf{F}+\mathbf{F}^{T}\nabla_{X}\mathbf{v}_{*,i}\right),\\ &=\frac{1}{2}\left(\nabla_{X}\mathbf{v}_{*,i} + \nabla_{X}\mathbf{v}_{*,i}^{T}\right) + \frac{1}{2}\left(\nabla_{X}\mathbf{v}_{*,i}^{T}\nabla_{X}\mathbf{u} + \nabla_{X}\mathbf{u}^{T}\nabla_{X}\mathbf{v}_{*,i}\right),\\ &\qquad\qquad\qquad\qquad\qquad\qquad \forall \, \mathbf{v}_{*,i} \in \, \mathcal{V},\quad *=x,y,z;\ i=1:N. \end{aligned} \end{equation} \end{split}\]

由于

\[ \mathbf{u} = \mathbf{N}\mathbf{u}_{E}, \]

\[ \nabla_{X}\mathbf{u} = \frac{\partial \mathbf{N}}{\partial \mathbf{X}}\mathbf{u}_{E} = \mathbf{B}_{L}\mathbf{u}_{E}, \]

对于全体 \(\mathbf{v}_{*,i}\),写作矩阵形式,得到

\[ \nabla_{X}\mathbf{v}_{*,i} = \mathbf{B}_{L} \]